Data Science, Analytics & AI for Business & the Real World™

Data Science, Analytics & AI for Business & the Real World™

What you’ll learn

  • Pandas to become a Data Analytics & Data Wrangling Whiz
  • The most useful Machine Learning Algorithms with Scikit-learn
  • Statistics and Probability
  • Hypothesis Testing & A/B Testing
  • To create beautiful charts, graphs and Visualisations that tell a Story with Data
  • Understand common business problems and how to apply Data Science in solving them
  • Data Dashboards with Google Data Studio
  • 36 Real World Business Problems and Case Studies
  • Recommendation Engines – Collaborative Filtering, LiteFM and Deep Learning methods
  • Natural Language Processing (NLP) using NLTK and Deep Learning
  • Time Series Forecasting with Facebook’s Prophet
  • Data Science in Marketing (Ad engagemnt & Performance)
  • Consumer Analytics and Clustering
  • Social Media Sentiment Analysis
  • Understand Deep Learning (Keras, Tensorflow) and how to use it in several real world case studies
  • Deployment of Machine Learning Models in Production using Heroku and Flask (CI/CD)
  • Perform Sports, Healthcare, Resturant and Economic Analaytics
  • Big Data Analysis and Machine Learning with PySpark
  • How to use Data Science in Retail (Market Basket Analysis, Sales Analytics and Demand forecasting)
  • You’ll be using pre-configured Jupyter Notebooks in Google Colab (no hassle or setup, extremely simple to get started)
  • All code examples run in your web browser regardless if you’re running Windows, macOS, Linux or Android

Our Complete 2020 Data Science Learning path includes:

  1. Using Data Science to Solve Common Business Problems
  2. The Modern Tools of a Data Scientist – Python, Pandas, Scikit-learn, NumPy, Keras, prophet, statsmod, scipy and more!
  3. Statistics for Data Science in Detail – Sampling, Distributions, Normal Distribution, Descriptive Statistics, Correlation and Covariance, Probability Significance Testing, and Hypothesis Testing.
  4. Visualization Theory for Data Science and Analytics using Seaborn, Matplotlib & Plotly (Manipulate Data and Create Information Captivating Visualizations and Plots).
  5. Dashboard Design using Google Data Studio
  6. Machine Learning Theory – Linear Regressions, Logistic Regressions, Decision Trees, Random Forests, KNN, SVMs, Model Assessment, Outlier Detection, ROC & AUC and Regularization
  7. Deep Learning Theory and Tools – TensorFlow 2.0 and Keras (Neural Nets, CNNs, RNNs & LSTMs)
  8. Solving problems using Predictive Modeling, Classification, and Deep Learning
  9. Data Analysis and Statistical Case Studies – Solve and analyze real-world problems and datasets.
  10. Data Science in Marketing – Modeling Engagement Rates and perform A/B Testing
  11. Data Science in Retail – Customer Segmentation, Lifetime Value, and Customer/Product Analytics
  12. Unsupervised Learning – K-Means Clustering, PCA, t-SNE, Agglomerative Hierarchical, Mean Shift, DBSCAN and E-M GMM Clustering
  13. Recommendation Systems – Collaborative Filtering and Content-based filtering + Learn to use LiteFM  + Deep Learning Recommendation Systems
  14. Natural Language Processing – Bag of Words, Lemmatizing/Stemming, TF-IDF Vectorizer, and Word2Vec
  15. Big Data with PySpark – Challenges in Big Data, Hadoop, MapReduce, Spark, PySpark, RDD, Transformations, Actions, Lineage Graphs & Jobs, Data Cleaning and Manipulation, Machine Learning in PySpark (MLLib)
  16. Deployment to the Cloud using Heroku to build a Machine Learning API

Our fun and engaging Case Studies include:

Sixteen (16) Statistical and Data Analysis Case Studies:

  1. Predicting the US 2020 Election using multiple Polling Datasets
  2. Predicting Diabetes Cases from Health Data
  3. Market Basket Analysis using the Apriori Algorithm
  4. Predicting the Football/Soccer World Cup
  5. Covid Analysis and Creating Amazing Flourish Visualisations (Barchart Race)
  6. Analyzing Olympic Data
  7. Is Home Advantage Real in Soccer or Basketball?
  8. IPL Cricket Data Analysis
  9. Streaming Services (Netflix, Hulu, Disney Plus and Amazon Prime) – Movie Analysis
  10. Pizza Restaurant Analysis – Most Popular Pizzas across the US
  11. Micro Brewery and Pub Analysis
  12. Supply Chain Analysis
  13. Indian Election Analysis
  14. Africa Economic Crisis Analysis

Six (6) Predictive Modeling & Classifiers Case Studies:

  1. Figuring Out Which Employees May Quit (Retention Analysis)
  2. Figuring Out Which Customers May Leave (Churn Analysis)
  3. Who do we target for Donations?
  4. Predicting Insurance Premiums
  5. Predicting Airbnb Prices
  6. Detecting Credit Card Fraud

Four (4) Data Science in Marketing Case Studies:

  1. Analyzing Conversion Rates of Marketing Campaigns
  2. Predicting Engagement – What drives ad performance?
  3. A/B Testing (Optimizing Ads)
  4. Who are Your Best Customers? & Customer Lifetime Values (CLV)

Four (4) Retail Data Science Case Studies:

  1. Product Analytics (Exploratory Data Analysis Techniques
  2. Clustering Customer Data from Travel Agency
  3. Product Recommendation Systems – Ecommerce Store Items
  4. Movie Recommendation System using LiteFM

Two (2) Time-Series Forecasting Case Studies:

  1. Sales Forecasting for a Store
  2. Stock Trading using Re-Enforcement Learning
  3. Brent Oil Price Forecasting

Three (3) Natural Langauge Processing (NLP) Case Studies:

  1. Summarizing Reviews
  2. Detecting Sentiment in text
  3. Spam Detection

One (1) PySpark Big  Data Case Studies:

  1. News Headline Classification

One (1) Deployment Project:

  1. Deploying your Machine Learning Model to the Cloud using Flask & Heroku

Who this course is for:

  • Beginners to Data Science
  • Business Analysts who wish to do more with their data
  • College graduates who lack real world experience
  • Business oriented persons (Management or MBAs) who’d like to use data to enhance their business
  • Software Developers or Engineers who’d like to start learning Data Science
  • Anyone looking to become more employable as a Data Scientist
  • Anyone with an interest in using Data to Solve Real World Problems

Can I download Data Science, Analytics & AI for Business & the Real World™ course?

You can download videos for offline viewing in the Android/iOS app. When course instructors enable the downloading feature for lectures of the course, then it can be downloaded for offline viewing on a desktop.
Can I get a certificate after completing the course?
Yes, upon successful completion of the course, learners will get the course e-Certification from the course provider. The Data Science, Analytics & AI for Business & the Real World™ course certification is a proof that you completed and passed the course. You can download it, attach it to your resume, share it through social media.
Are there any other coupons available for this course?
You can check out for more Udemy coupons @ www.coursecouponclub.com
Note: 100% OFF Udemy coupon codes are valid for maximum 3 days only. Look for "ENROLL NOW" button at the end of the post.
Disclosure: This post may contain affiliate links and we may get small commission if you make a purchase. Read more about Affiliate disclosure here.
Deal Score-1

Gain access to over 11,000+ courses for just $16.58 [₹850] per month

Choose between monthly or annual billing cycles, with the freedom to cancel at any time.

The future belongs to learners. Udemy online courses as low as $13.99

New customer offer! Top courses from $14.99 when you first visit Udemy

Gain the skills you need to reach your next career milestone for as little as $11.99

Course Coupon Club
Logo
Follow us on Telegram Join us on FB